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A hybrid adaptive gridding procedure combining the concepts of
both local grid refinement and global grid moving has been developed
for time-independent recirculating flow problems. The procedure starts
with the global grid moving method which provides an initial adaptive
solution. Rase an this initiaf solution, farge error regions are flagped and
local roflinemant is then applied on the large eror regions. The methods
for errar estimation and interface treatment are discussed. The proce-
dure is assessed in a one-dimensional convection-ditfusion equation, a
driven polar cavity flow, and a laminar backward-facing step fiow.
Efticiencies of the various approaches are evaluated, Specifically, in the
test problems, the hybrid adaptive grid solution requires less than one-
tenth of the CPU time of that of the uniform fine grid solution to achieve
the same accuracy. The procedure can be conveniently extended to
three-dimensional, irregular geometry flow problems.  © 1993 Academic

Press, Inc.

INFRODUCTION

It is well known that the solution of a system of partial
dilferential equations is strongly dependent upon the grid
arrangement. In many cases, grid arrangement can affect
not only the solution accuracy but also the numerical
stability. In optimizing the grid distribution, the adaptive
grid method [1-3] appears to be one of the most promising
techniques. Adaptive methods have been applied to various
topics including fluid, heat transfer, and combustion
problems [4-237. Adequate serveys and descriptions of this
stubject ean be found in Refs. 1, 2.

Among various adaptive mcethods proposed, most of
them can be roughly fitted into two categorics [4]. The
first category is the global refinement techniques which are
represented by the variational method [12] and the
equidistribution method [13-20] among others. In these
methods, the total number of grid points is fixed and after
adaption the grid points cluster in the rcéions where solu-
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tion variations are large. The disadvantage of these methods
fies in the shortage of grid points when the flow field is
complicated. For example, if the grid is foilowing one wave
front and another one arises somewhere else, the initial grid
then has to be adjusted abruptly [21]. As a consequence,
cerlain solution accuracy cin be lost.

The second category is the local mesh refinement
methods which are represented by the works of Oliger and
his co-workers [4, 5]. In this method, through the error
estimation large error regions are flagged and several levels -
of grid refinement are applied in these regions to achieve the
pre-sct accuracy. Pattern recognition procedures and data
structures are crucial to the success of these approaches. For
problems with sharp wave fronts such as those with com-
bustion or shock waves, many levels of grid refinement may
be needed to obtain the desired resolution and complicated
data structures may result,

Dannenhoffer [227] compared the above two approaches
and concluded that both approaches are effective in
reducing the solution error. Relative merits were discussed
in his study. However, it was also stated that details in the
implementation of each of the schemes make a detailed
comparison impractical. The study suggested a combina-
tion of the two approaches to yield an optimum one. As also
commented by Hedstrom and Rodrique [21], a technique
which combines the best features of both the global and
local methods is in high demand. Lee et @l [23] used a
combined method of grid moving and local refinement in
computing onc-dimensional model cquations. It was found
that the combined method yielded a stable and accurate
solution. Following the idea, in the present study the
authors developed a hybrid adaptive gridding procedure for
recirculating flow problems. _

The grid addition technique of Smooke and Koszykowski
[11] has partially adopted the hybrid gridding concept. In
their study, a method which adds or deletes the grids (in
contrast to moving base grids globaily within the domain)
to equidistribute a positive weight function over a given
mesh interval in each direction was used. In this method,
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since the grids are added globally in each direction, some of
the grid points may be wasted and this causes a loss of
efficiency. On the other hand, because the computation is
performed in the entire domain on a product grid, a
sophisticated data structure can be avoided. Moreover,
no treatment for the interfaces between the refined region
and the base grid region is needed in this method. The
refinement criteria of this method rest on the magnitude of
the derivatives of sclected flow properties.

In a very recent paper, an adaptive procedure was
developed for convection diffusion problems by Acharya
and Moukalled [25]. In their method, based on the values
of the weight function obtained on the initial coarse grid, the
regions which need refinement are flagged. The number of
grid points in each flagged region is then increased and a
new mesh based on variational principles is generated. The
“inner” and “outer” solutions are iterated in a multi-grid
fashion until convergence is obtained. Their procedure has
been applied to three model problems with a very coarse
initial grid. In their solutions, with the same amount of CPU
time and a comparable accuracy to the finer uniform grid
solutions, they found that a number of grid points could be
reduced by three to five times. A close comparison between
their procedure and the present one reveals the following
differences: First, in the present study, the grid flagging is
based on an adaptive solution (which is obtained by using
the moving grid method} instead of an initial grid solution.
Since an adaptive solution provides a more accurate basis,
this practice is believed to significantly reduce the large
error regions and refinement levels needed. Second, they
used the weight function distribution as an indicator of the
error distribution. This can be an alternative for a more
sophisticated error estimator such as the Richardson
method. However, the usefulness of this estimator should
be further exploited. Third, a more sophisticated pattern
recognition procedure and a more complicated data struc-
ture are needed to handle the highly irregular boundaries of
their flagged regions. For 2 problem which requires multiple
levels of refinement, the application of the procedure may
not be straightforward. Lastly, the grid generation in the
flaged region was based on a variational principle in their
study. Two Poisson equations were solved to obtain their
adaptive grid in the refined regions. For a three-dimensional
application, computational overhead can be a major
concern. More specific comparison of the two procedures
will be addressed below.

In the present procedure, the grid moving method of Lee
etal. [16,17] is employed to obtain the initial adaptive
solution. An error estimator is used to evaluate the trunca-
tion error at each adaptive grid node. The large error
regions are then refined by using a denser grid (e.g,
doubling the number of grid points). Boundary conditions
for these refined regions are provided by the base grid
solutions on the interfaces. Interactions between the “inner”
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(fine grid) solution and the “outer” (coarse grid) solution
are checked to ensure that the solutions are consistent and
converged in the entire domain.

As mentioned above, a direct comparison of the numeri-
cal efficiencies between the approaches of local refinement
and global grid moving is difficult due to the wide variations
in data structure, refinement criteria, details of the scheme
implementation, and others. In this study, relative merits
among schemes of local refinement, global grid moving and
hybrid gridding are assessed only if ambiguity can be
avoided. This means that the comparisons may not be
general enough. The assessment of efficiencies of various
approaches is based on the comparisons to the exact or very
fine grid solutions.

GOVERNING EQUATIONS

Tn the present study, the two-dimensional, incom-
pressible, laminar, recirculating flows have been used to
demonstrate the usefulness of the technique. The general
governing equations for the flows can be expressed in the
following unified form as

% (p®) + div(p V) = div(I"® grad )+ R®, (1)

where ¢ represents the dependent variable, I"® is the effec-
tive diffusion coefficient of variable ¢, and R? is a lumped
source term for the equation. In order to handle the
complex geometries, the above equation is transformed in a
boundary-fitted coordinate system and this leads to the
equation
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where F/ is the contravariant velocity, g* is the metric
tensor, g7 and ¢* are the general coordinates, and \/E is the
Jacobian. For a two-dimensional, steady, incompressible

flow, the governing equation becomes
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Equations (3) can be discretized by using various differen-
cing schemes such as the second-order upwind scheme and
the power-law scheme (which is commonly used in the
SIMPLE procedure [26]). The final form of the discretized
equation is

A¢¢¢,= Z

i=W,ENS

AP+ S. )

The discretized momentum equation (4} along with a
pressure correction equation are solved with the SIMPLE
algorithm; details are discussed by Patankar [26].

NUMERICAL TECHNIQUES

1. Grid Moving Method

In the present grid moving method, weight functions
constructed by using the flow property gradients are
equidistributed. For example, along the x direction for the
ith mesh

W, Ax; = const. (5
Therefore, for a large weight function W,, the corre-
sponding mesh size should be small to satisfy the above
relation.

To improve grid quality, the weight function used by
Dwyer et al. [13] is modified to account for the coupling of
the weight functions among the neighboring grid points.

The modified W at the grid (, j) along x direction assumes
the form of [16, 17, 20]

W,i=1+4}, bN[|¢c|f,j+ Y |¢¢|k'ijlexp(_|i'_k|)
N

k=1k#i

Y 1beluxC, exp(—u—m], ©)

I=1,0#7

where b is a weighting parameter, ¥ is the number of
property gradients considered, ¢, is the gradient of the
property ¢ along the £ line, and C, is the coupling coef-
ficient. With C,=0 weight functions decouple from each
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other and resume the original form of that used by Dwyer.
In the present study, C, is set to unity. It has been shown in
other studies [ 16, 17] that the coupling of weight functions
can improve the grid quality and result in a more accurate
solution.

To construct a product adaptive grid, the initial grid {e.g.,
a uniform grid) solution is first obtained. Using this
solution, the property gradients in the weight functions are
calculated and these weight functions are then used to
redistribute the grid according to Eq. (5).

2. Truncation Error Estimation

Error estimation is one of the most important steps in
applying a local refinement method. This step shall identify
the regions which need refinement. Very often, the method
of Richardson extrapolation [4, 5, 27, 28] is used to
estimate the solution error. This method requires computa-
tion of flow field twice, once on a fine grid, the other on a
coarse grid (e.g., doubling the mesh size of the fine grid},
and the solution differences are taken as an indicator of the
error. There are advantages to this method [5], for exam-
ple, it is independent of the PDE as well as the difference
scheme. Nevertheless, we found a direct estimator based on
the current solution is preferable if it exists, since the proce-
dure can then be simplified especiaily when a three-dimen-
sional problem is treated. In a nonuniform grid (as in an
adaptive grid) the application of the Richardson method is
not as convenient as it is in a uniform grid. In a uniform
grid, to apply the method, a common practice is to double
the mesh size so that a coarser grid solution can be obtained
on the base pgrid, and an extrapolation formula (e.g.,
Eq. {8a) in Ref. [4]) is then applied. Note that this formula
is based on a uniform grid size in one dimension so that the
denominator is 27 — 1, where p is the order of the method.
In a nonuniform grid, based on the local grid size, the
denominator of this formula should be replaced by R? —1,
where R is the ratio of the neighboring grid sizes. The ratio
changes from grid point to grid point and needs to be
evaluated. This requires extra computation and should
affect the accuracy of the formula too. If the method is
carried out by halving the grid size, this problem can be
avoided. However, since the grid is doubled, it ends up using
a denser grid for the error estimation, and this extra
computational effort should be taken into account. In this
study, we double the number of grid points in the method.

As an example of the direct method, in this study, a for-
mula which was developed by the authors {24] for a direct
estimation of truncation error is employed. This formula is
based on the truncation error of convection terms in a
curvilinear coordinate system. The formula takes the form

Te=Tg + Tgy+ Tgs, )]
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p
= 757 [(Ux§§£+ merrr)fx+ (Uy¢¢¢+ Vynrm)fy]

2J ®)

e
TEZ = —} {(UXCXCC + quxqq) fxx+ [U(yﬁfxtff +‘xf yé'f)
+ V(yr,-xnn"'_qum;)] _fxy+ (nyyii+ Vynynn)fyy}
(9)

P
3J

+3(Uxé y§+ quyfz,) fryy+ (UJ’g"' Vy?;) f_.vy_v]- {10)

Tl_-.'3= (Ux§+ in) ftxx+3(Ux§y§+ inyr,v) fxx_v

In these equations, p is density, J is the Jacobian, U, V are
the contravariant velocities, f represents the flow properties
such as primary velocities u, v. In using Eq. (7) as a trunca-
tion error estimator, it has been assumed that in the com-
putation that the truncation error of the convection terms is
dominant. In the lollowing test cases, this formula is found
to perform satisfactorily. The resulting flagged regions are
comparable to those obtained by using the Richardson
method. Since the formula is employed only as an error
indicator, the accuracy of its value is not a primary concern.
The computational overhead for the error calculation is
minor since in this formula all item values except f
derivatives are readily available at each grid.

In our opinicn, both the Richardson method and the
formula should be used only as error “indicators” rather
than value “estimators” since neither can provide exact
values of errors in all cases. This statement is further
justified in the test cases.

In the Richardson method, when the normalized solution
error exceeds a pre-assigned value (e.g., 0.015), the grid is
flagged. For the truncation error formula, the grid is flagged
if its normalized truncation error exceeds a pre-assigned
value (e.g., 0.1). The definition of the normalized truncation
error 1s

+ _ T

E= . 11
T2 ()

max

Since T can be cither positive or negative, absolute values
should be used. The selection of the pre-assigned values is
relatively arbitrary. However, too small a value usually
results in too large a flagged region and more unnecessary
computation. On the other hand, too large a pre-assigned
value causes a small flagged region, together with inaccurate
internal boundary conditions. Iterations between the
“inner” and “outer” solutions will be necessary. This may
result in efficiency loss.
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3. Interface Treatment and Solution Iteration

Location of the internal boundary can determine the
necessity of the iteration between the “inner” and “outer”
solutions. Internal boundary conditions for the flagged
regions are specified by using the base grid solution. In a
limiting case, if the interface has the exact values no solution
iteration will be needed theoretically. In practice, the inter-
faces should be placed in a region (if there is one) where the
solution is accurate to a certain degree. Based on this view-
point, it is believed that too coarse an initial grid results in
a strong requirement for the solution iteration, since the
boundary conditions (which is prescribed by the initial grid
solution) for the flagged regions may never be accurate. In
other words, the flagging criteria should be reasonably loose
so that the interface can be located in a region which
contains an accurate solution.

In the procedure, the internal boundary for the refined
region is set two grid widths toward the low error region
from the original boundary which is “flagged” by the error
indicator. By doing so, it was shown in the test problems
that, due to these more accurate boundary conditions, the
errors in the refined regions were reduced. Also, we found
that the iterations between the “inner” and “outer” solutions
mentioned in Ref. [47 were not needed in some of our test
problems. In other studies by the authors, only one iteration
cycle was needed in most cases.

Along an interface, interpolation is required to transfer
the solution from the coarse to the fine grid or vice versa to
provide boundary conditions for the other region. The con-
servative interpolation technigue of Rai {29] is adopted in
this study. This technique requires that, across a segment of
the interface, the fluxes of both sides of the interface should
be equal [30]. Therefore, with known fluxes from one side,
variables at each grid node along the boundary can be
obtained accordingly, and flux conservation is automati-
cally assured. In our study, since grid size is halved to refine
the grid, interpolation is relatively easy.

4. Solution Procedure

The general procedure of the present hybrid method
follows the steps below:

1. Obtain the initial base grid solution.

2. Calculate the weight function defined in Eq. (6) at
each grid and construct the adaptive grid according to
Eq. (5).

3. Obtain the initial adaptive grid solution.

4. Obtain the error distribution by using one of the
error indicators.

5. Flag the larger error regions; select the boundaries
for the flagged regions. A buffer zone is applied between the
coarse grid region and the flagged region.
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FIG. 1. Solutions of the one-dimensional convection-diffusion equation (second-order central difference).

6. Apply a finer mesh in the flagged regions.

7. Use the base grid solutions to specify the boundary
conditions for the flagged regions.

8. Re-calculate the solution in each flagged region.

9. Along the interfaces (which are inside the flagged
regions) of the coarse grid regions, interpolate the fine grid
solution to specify the boundary conditions for the coarse
grid regions.

10. Re-calculate the coarse grid solution. If the overall
normalized solution change is larger than a specified
percentage, repeat steps 7-10 until the criteria are met.

11. Advance to the next level of refinement if required.

A few comments may be useful to clarify the steps. Grid
moving (steps 2-3) before a local refinement is believed to
be one of the most important features of the method.
Through these steps, the large error region can be reduced
due to the improved adaptive solution. This effect is shown
in Fig. 1. This reduction of iarge error region can be signifi-
cant in a three-dimensional problem. Grid tesolution in
high gradient regions also significantly increases after one
round of grid moving as can be seen in Table I. The finest
grid size (0.1) is only one-third of the initial grid size.

In step 4, when the Richardson method is applied to an
adaptive grid, our practice is to halve the grid size instead of
halving the number of grid points. However, this will
require the computation of a dense grid solution. If the
formula (or other direct estimator) is employed, errors can

TABLE I

Summary of the Performances of the Various Approaches
(with Second-Order Central Difference)

Case ERR, G.S. Grid
St-U 2.63 03 51
51-M 0.69 0.1 51
51-H 0.21 0.05 85
51-HM 0.15 0.04 85
85-M 0.39 0.05 85
101-U 0.65 0.15 101
125-U 042 012 - 125
151-U 0.28 0.10 151
175-U 0.21 .08 175
201-U 0.17 0.07 201
501-U 0.03 0.03 501
Note, U=unifortn grid, M=moving grid; H=hybrid grid;

HM = hybrid grid with moving grid refinement; (.8, =finest grid size;
ERR,= Zf\; 1 '¢ _‘?}’exacll: Ax;.
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be evaluated directly at each grid point using the current
solution without solving for a second solution. In step 6, to
refine the grid in the flagged regions, two approaches are
compared in this study. The first approach is simply halving
the grid size (H grid), and the other is using this doubled
number of grid points and applying the grid moving method
in the flagged regions again (HM grid), In this study, the H
grid will be the standard practice for all the test problems.
The HM grid is used only in the polar cavity flow to assess
its usefulness,

Although the procedure is not limited to one level of
refinement, excessive levels of refinement will require a
sophisticated pattern recognition procedute and the
resulting data structure will be complicated. This is
undesirable for a practical engineering application. In
the present study, assessments are based on one level of
refinement.

5. Solver

This study employed the well-known SIMPLE algorithm
[26] in a boundary-fitted coordinate with a non-staggered
grid arrangement. In the two-dimensional test probiems,
second-order upwind and second-order central schemes are
used in discretizing the convection terms and diffusion
terms, respectively. Primary velocities have been chosen as
dependent variables. The detailed formulation was dis-
cussed by Lee er al. [31, 327, All the computaiions in this
study were performed on a DIGITAL VAX8600 computer.

TEST PROBLEMS AND RESULTS

In this section, three prototype problems have been used
to demaonstrate the applicability of the procedure. The first
is a one-dimensional convection-diffusion equation with a
source term [ 14, 23]. The results are compared to the exact
solution. In this probiem, features of the present adaptive
procedure are clearly demonstrated. The second problem is
a laminar driven polar cavity flow with a Reynolds number
of 350. The hybrid adaptive solution of this problem is com-
pared to a very fine uniform grid solution, viz. 129 x 129,
which mimics the experimental data of Fuchs and Tillmark
[33] closely. The third one is a laminar backward facing
step flow with a Reynolds number of 800. Here, a 101 x 101
uniform grid solution has been used as a reference solution.
In the study, comparisons are based on the solutions driven
to the same level of convergence. The convergence criteria
for the two-dimensional problems are that the normalized
maximum residuals of both momentum and continuity
equations in the domain be less than 1075,

For the test problems, the deviation from a reference
solution is used as a measurement of the accuracy of the
methods. Two of these solution errors, the normatized mean
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error ERR and the normalized maximum error ERR ,, are
defined in the following and used in the test problems.

[\/(u—uofﬂu—vo)z
= 1) + (v =)’
N

where u, v are the coarse grid velocities and u,, v, are the
fine grid reference solutions. For ail the test cases, the
efficiency of the adaptive procedure, rather than the details
of flow physics, has been emphasized.

1 N
ERR=— %

=1

] x 100 %
" (12)

N
= Max

i=1f

ERR x 100%,

' (13)

max

1. One-Dimensional Convection-Diffusion Equation
with a Source Term

Consider the following model equation [ 14, 23],

ug,.=vg,, + S(x), u, v = const (14}
with the source term,
Sx)=cx+d, O0sx<x,
——Cx1+dx+cxl+d(xl+x2), X, X< X, X,

*2 2 (15)

where ¢ = —20, d=30, x,=2h, x,=h, and h=$. The
overall Peclet number uL/b = 1000, where the total length L
is 15 in the problem.

Given the boundary conditions ¢(0)=0 and ¢(L)=0,
the exact solution of Eq. (13) is depicted as the solid line in
Fig. 1. The exact solution shows that besides having a
region where the convection term is balanced by the source
term, there also exists a boundary layer where the convec-
tion term is balanced by the diffusion term only. This
boundary layer requires a large number of grid points to
obtain an accurate solution. In this problem, we first used
the second-order central scheme for both the convection
and diffusion terms. As is well known, there exist wiggles in
the solution if the local Peclet number is greater than two.
To suppress solution wiggles, 500 uniform grids will be
needed in this problem. In a second test, a first-order
upwind scheme is used to discretize the convection term,
and a second-order central scheme is used for the diffusion
term. The solution is wiggle-free but less accurate. It was
shown that the hybrid procedure can effectively improve the
solution in both tests.

Central Differences

For the first test, the errors of solutions of the 51 uniform
grid and the adaptive grid (with grid moving method) are
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FIG. 2. Selution errors of the uniform grid and adaptive grid solutions.

compared in Fig. 2. It is obvious that the large error regions
and the maximum error are significantly reduced in the
adaptive solution. If the uniform grid solution error were
used to flag the large error regions, there would be only one
region which is much wider than those obtained by using
the grid moving solution, as is seen in the figure. Conse-
quently, more grid points and/or more levels of refinement
will be needed for the uniform grid case to obtain similar
resolution to that of the grid moving one. To flag large error
regions of the adaptive solution, the truncation error
formula in one-dimensional form was also used. Figure 3
compares the error distribution obtained by the Richardson
method and the formula with the exact solution error
distribution. The figure is blown up near the boundary
layer. In the figure, errors are normalized by the peak error.
The formula adequately indicates the large error regions in
this problem. Note that the formula provides truncation
errors in contrast to solution errors by the Richardson
method. Both of the methods are intended to be used as the
error indicators only.

Following the procedure, the number of grid points in the
flagged regions is doubled. The resulting solutions using
various approaches are shown in Fig. 1 already. In these
solutions, since the second-order central scheme is used for

the convection term, very strong wiggles appear in the
uniform grid solutions even with 175 grid points. On the
other hand, the hybrid adaptive solutions are wiggle-free as
seen in Fig. 4. The bondary layer region of the solutions is
shown in Fig. 4. The best solution is due to the hybrid
method with the HM grid. To compare the performances,
Table I summarizes the total error, the total number of grid
points used, and the finest grid size of the various
approaches. The hybrid methods use a total grid points of
85. With this number of grid points the grid moving method
can achieve the accuracy of that of the 125 uniform grid
point solution. The hybrid methods, on the other hand, can
achieve the accuracy of that of the 175 and 201 uniform grid
point solutions, respectively. Also note that the finest grid
size of the HM grid is 0.04 which is about one-eighth of the
initial uniform grid size. For a local refinement method,
three levels of refinement will be needed to achieve the same
grid size if halving the grid size is used in the refinement
procedure. Note that the solution profile of the HM grid in
the “boundary layer” region is almost perfect in this case.
The HM grid is believed to be effective in a region which
contains strong property gradients.

The “inner” and “outer” solutions iteration is found to be
unnecessary in the present case. The reason can be
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attributed to the accurate solution values of the interfacial
boundary which is located in the low error, flat solution
region.

Upwind Differences

For the second test, the first-order upwind scheme is
employed for the convection term. A similar procedure as
used in the previous case is followed except that in the
ftagged regions the number of grid points’is increased to
eight times that of the base grids. This is because an
inaccurate scheme is employed, and more grid points are
expected to be needed to achieve an accurate solution. Error
distributions are displayed in Fig. 5. The large solution
error region flagged by the Richardson method is wider.
Therefore, the entire domain will need refinement. After
‘refinement, it is found that many grid points in the flat
solution region are wasted. On the other hand, the trunca-
tion error formula indicates a flagged region which is more
concentrated in the “error source” region. These flagged
regions which need refinement are smaller. In this test case,
large errors stem from the region where the source term
dominates, and these errors are carried downstream. If the
solution in this region is improved, the downstream solu-

1.0

0.84

0.6

0.4 4

Normalized Errors
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tion can be improved after one cycle of solution iteration
without increasing the number of grid points in the flat solu-
tion region. The following results are based on the flagged
regions obtained by the formula instead of that obtained by
the Richardson method. Figure 6a shows the solutions of
the various approaches. The solutions in the boundary layer
region are clearly depicted in Fig. 6b. In contrast to the pre-
vious test case, since the initial grid provides an inaccurate
solution everywhere in the domain, a solution iteration
(steps 8-10) should be expected due to the inaccurate
boundary conditions for the large error region. In this test
case only one cycle of iteration is employed.

Table 11 summarizes the performance of each method. In
this table, G.8.! represents the finest grid size in the first
large error region, where the source terrn dominates, and
G.5.2 stands for the finest grid size in the second large error
region, where the solution boundary layer occurs. The best
gridding method in this case is the H grid method. This grid
yields a solution comparable to that of the 1501 uniform
grid. Although the finest grid size in either of the large error
regions is smaller than that of the H grid, the HM grid does
not yield the best solution. This is probably due to the
feature of the present grid moving method. Since the weight
functions use only the first derivatives, it cannot properly

| &~ $esact l

Error Formula

Q.24

0.0 T

FIG. 5. Error distributions (first-order upwind scheme).
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(a) Solutions of the one-dimensional convection-diffusion equation (first-order upwind difference). (b) Solutions near the boundary layer.
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TABLEII

Summary of the Performances of the Various Approaches
(with First-Qrder Upwind Difference)

Case ERR, GS.1 GS.2 Grid
51-U 6.25 0.3 0.3 51
51-M 211 0.077 0.062 51
51-L 0.80 0.0375 0.0375 216
51-H 0.22 0.0111 0.0078 277
51-HM 0.29 0.0073 0.0033 277
277-M 0.51 0.011 0.0052 277
151-U 2.14 0.1 0.1 151
301-U 1.09 0.05 0.05 N
401-U 0.82 0.0375 0.0375 401
501-U 0.66 0.03 0.03 501
751-U 0.44 0.02 0.02 751
1001-U 0.33 0015 0.015 1001
1t51-U 0.29 0013 0.013 1151
1251-U 0.26 0.012 0.012 1251
1501-U 0.22 0.0 0.0t 1501
1751-U 0.19 0.0086 0.0086 1751
2001-U 0.16 0.0075 0.0073 2001

Note. U=uniform grid; M =moving grid; L =local refinement;
H = hybrid method; MH = hybrid method with moving grid; G.S. = finest
grid size: ERR, = X%, 14 fosaatls 4.

resolve the region where the sotution has a zero property
gradient; even the finest grid size is smaller. The error from
this region is carried downstream and causes a higher over-
all error. Nevertheless, the HM grid acquires a much better
solution profile in the boundary layer region as is shown in
the same figure. Note that the total grid points employed in
the H grid are 277. This number of grid points, if used in a
grid moving method, can achieve an accuracy comparable
to that of the 700 uniform grid. For the basic local refine-
ment method (51L) with one level of grid refinement { x §),
total grid points of 216 yield a solution accuracy of that of
the 401 uniform grid. This similar accuracy is expected since
the finest grid sizes in both cases are similar. Note that the
flagged regions are wider in this case. Because they are
based on the initial uniform grid solution which is less
accurate than the moving grid solution.

2. Driven Polar Cavity

A lid-driven polar cavity flow with a Reynolds number of
350 is used to assess the procedure. This problem has been
studied experimentally as well as numerically by Fuchs and
Tillmark [337. The numerical and the experimental results
were found to be in very good agreement in their study. The
physical dimensions and boundary conditions are shown in
Fig. 7. Also shown in the figure are the streamtines. It was
demonstrated by the present author in another study [16]
that our 81 x 81 fine grid solution mimicked the experimen-
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FIG. 7. Polar cavity flow with the boundary conditions.

tal data of Fuchs and Tillmark [33] closely. In this study,
the solution of an even finer grid of 129 x 129 was chosen as
the reference solution for comparison. The base grid used in
this problem i1s 25 x 25. With this base grid solution, the grid
moving method is applied first to obtain the initial adaptive
grid solution (case 25-M in Table III). At -this stage, the
error has been reduced to one-third of that of a uniform grid
solution with a computational overhead of less than 20%

TABLE III

Summary of the Performances of the Various Approaches
(Polar Cavity Flow)

Case ERR ERR, CPU Grid G.SAE n)
25-U 326 96.6 131 625 (0.033, 0.040)
25-M 10.7 381 151 625 (0.018, 0.021)
25-H 3.0 9.8 451 882 (0.009, 0.011})
25-HM 238 9.5 497 882 {0.005, 0.007)
31-U 20.3 61.9 266 961 (0.026, 0.033)
3I-M 7.0 24.5 280 961 (0,014, 0.017)
41-U 11.8 359 795 1681 (0.020, 0.025)
41-M 40 135 892 1681 (0.011,0.013)
61-U 52 16.1 3580 3721 (0.013, 0.017)
61-M 1.8 6.7 3701 3721 (0.007, 0.008)
81-U 31 100 32900 6361 {0.010, 0.013)
101-U 20 60 115200 10201 {0.009, 0.010)
125-U — — 499562 16641 {0.006, 0.007)
Note. U =uniform grid; M = moving grid; H = hybrid method.
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{Table [11). Note that this adaptive solution has an
accuracy comparable to that of a 41 x 41 uniform grid solu-
tion. In the next step, the large error regions of the initial
adaptive solution are flagged by employing both the
Richardson method and Eq. (7). Figure 8 shows these large
error regions flagged by the various indicators. The full
marks represent the large error grid nodes in the §-direction
velocity, and the open circles stand for the large error grid
nodes in the r-direction velocity. The large sclution error
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regions of the initial adaptive solution are shown in Fig. 8a.
Grid points are flagged whenever the normalized solution
error relative to the fine grid solution is larger than 0.015.
Note that the solution error is normalized by the top wall
velocity which is unity in this case. As mentioned before, a
key step in the present procedure is the use of a moving grid
solution as the base for flagging the grid points. If the initial
uniform grid solution is used, the large error regions will be
much broader, as shown in Fig. 8b. The same flagging

FIG. 8. Large error regions flagged by the various indicators: (a) based on the initial adaptive grid solution (0.015); (b) based on the initial uniform
grid solution (0.015); {(c) by the Richardson method (0.025}; (d) by the Richardson method (0.015); (e} by the formula Eq. (7) (0.1).
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L

FIG. 12. The adaptive grids for the polar cavity flow: (a) H grid; (b) HM grid.

criterion is used in both cases. Obviously, less effort for
subsequent grid refinement will be needed when using an
adaptive initial solution, Figure 8¢ demonstrates the
results obtained by the Richardson method with a flagging
criterion of 0.025. If the same criteria as that used in Figs. 8a
and b are employed, the flagged region will be much wider,
as shown in Fig. 8d. In Fig. 8e, the formula is used. Grid
points are flagged whenever the normalized truncation error
T (Eq. (11)) is larger than 0.1. Qualitatively, both the
flagging methods are useful. After flagging the large error
regions, the number of grid points in these regions is
doubled. The effects of the location of an internal boundary
are discussed below.

In Fig.9, I and Il are the boundaries of the original
flagged region. In the procedure, these boundaries are
extended two grid sizes toward the lower error region to the
lines I' and I1". The effect of the location of the boundaries
on the flagged region solutions is shown in Fig. 10. When
the boundaries move outward two grid sizes or more, the
overall solution errors of the refined regions remain
unchanged. This result demonstrates the effect of the choice
of internal boundary location. This explains why the itera-

tion between the “inner” and “outer” solutions is not needed
in this specific problem. This also implies that the “outer”
solution obtained by the grid moving method is accurate.
To further justify this, another test is conducted. In the test,
the boundary is retreated from II’ to II” which is inside the
large error region. It is found that due to the inaccurate
boundary conditions {on II"), solution iterations are
needed. After one cycle of solution iteration, the v velocity
profile along the line II” changes as is shown in Fig. 11a.
This updated velocity profile remained unchanged in the
following second and third cycles of iterations. On the other
hand, the solution profile along the line 1T’ which is outside
the large error regions remained the same in all the iteration
cycles. These resuits imply that first, in this case the initial
adaptive solution does provide an accurate solution in some
areas of the domain. Second, the selection: of the location of
the boundary can be crucial to the efficiency of a procedure.
The necessity of the “inner” and “outer” solution iteration is
mainly determined by the accuracy of the internal boundary
conditions instead of by the flow type (e.g., etliptic). If the
internal boundaries are located in the low error regions, the
effort spent on iteration can be minimized. The strategy for

FIG. 13. The streamlines of the polar cavity flow: (a) based on 129 x 129 uniform grid solution; (b) based on 25-H adaptive grid solution.
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FIG. 14. The laminar backward facing step flow with the boundary conditions, Re = 800,

the choice of the boundary location is decisive especially
when a multi-dimensional problem is to be solved. For a
problem which needs many levels of grid refinement,
solution iteration may require an enourmous effort.

The summary of the results is tabulated in Table I1I. The
H grid and the HM grid are shown in Fig. 12. In this test
problem, the HM grid is applied to the flagged region
enclosed by the boundary I1” and the left wall (case
25-HM). On an HM grid, since all the grid points in the
refined regions are dislocated after grid moving, heavy data
sorting and interpolation along the boundaries are needed
whenever the data are transferred. This will require some
effort, especially in three-dimensional problems and when
solution iterations and many levels of refinement are
needed. For the present case, it is found that the advantage
of using an HM grid is marginal. However, as mentioned
before, an HM grid can be more effective in problems with
high flow property gradients.

Table III compares the errors defined in Eqgs. (12) and
(13} among different approaches. The hybrid adaptive solu-
tion (25-H, 25-HM) errors are comparable to that of the
81 x 81 uniform fine grid solution (81-U) and the CPU time
are reduced as much as 70 times. The total number of grid
points used is about one-eighth of the latter. The storage
requirement is therefore lower due to a smaller number of
grid points. The tabie also shows that the grid moving solu-
tion (25-M) achieves the accuracy of a 41 x 41 uniform grid
solution (41-U) with only one-fifth of the CPU time. Note
that the improvement of the solution between the 25-M and
25-H is due to the reduced grid size in the refined regions.
This step is effective since the grid refinement is conducted
right in the large error regions, where the initial adaptive

grid does not provide high enough resolution. It is
interesting to note that the solution improvement between
cases 25-M and 25-H is similar to that between cases 41-U
and 81-U. In these cases the finest grid sizes (the last column
in Table IIT), are aiso similar. The finest grid size achieved
by the H grid is about 0.01 in either direction, this size is
equivalent to two levels of halving the grid size ona 25 x 25
base grid. However, with two levels of grid refinement, the
pattern recognition procedure and the data structure will be
more complicated. This may cause significant extra effort in
a three-dimensional problem. The total number of grid
points used in the H grid is 882. Using a similar number of
grid points in the grid moving method (31-M), the accuracy
will be comparable to that of the 51-U. The streamline
contour obtained by the hybrid method (25-H) is displayed
in Fig. 13b in contrast to that based on the 129 x 129 grid
solution (Fig. {3a).

3. Backward-Facing Step

In the second test flow problem, a laminar backward-
facing step flow with Re = 800 as shown in Fig. 14 has been
chosen. The Reynolds number is defined using the mean
velocity in the inlet and twice its height as reference velocity
and length, respectively. The step height is 0.475 and the
inlet height is 0.5 so that the expansion ratio is 1.95 [34].
Note that the figure is not drawn 1o the scale; i.e., the chan-
nel height has been scaled up. The base grid is again 25 x 25
and the reference solution is a 101 x L01 uniform gnd solu-
tion. After step 2 of the procedure, the grid-moving method
yields the grid as shown in Fig. 15. The adaptive grids
cluster near the free shear layer. Based on the moving grid
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FIG. 15. The initial adaptive grid for the backward facing step flow.
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solution, in the next figure, the large truncation error region
acquired by Eq. (7) is compared to that obtained by using
the Richardson method and by using the reference solution.
To flag large error regions, the criteria, for the u component,
are 0.05 in the reference solution approach, 0.05 in the
Richardson method, and 15% in the formula approach. For
the v component, they are 0.015, 0.015, and 15%, respec-
tively. The normalized errors are defined previously, Note
that large errors are concentrated near the free shear layer.
The boundary for the large error region is marked as the
solid line I in Fig. 16c. By extending the boundary line I two
grid widths outward to I', a similar effect of error reduction
as shown in Fig. 10 for the cavity problem is observed.
There is no need for solution iteration if the boundary I’ is
chosen. This is demonstrated in the following test. Three
boundary locations, that is, along the lines I', I, and 1" as
shown in Fig. 16c are tested. If the boundary is placed along
the line I, the solutions do not change after solution itera-
tion. The v velocity component along the line I’ is shown in
Fig. 17a which implies that the initial solution along the ine
1" provides accurate boundary conditions for the refined
region; therefore, no iteration 1s actually needed. On the
other hand, if the boundary is retreated to the line I” which
is inside the large error region, iterations are required to
correct the solutions. Figure 17b shows the solution change
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along the line [” after the iteration. Note that only one cycie
of solution iteration is needed to update the solutions.
Theoretically, in an ¢lliptic problem, a change in any part of
the domain affects the solution elsewhere. However, the
need for a solution iteration also depends on how strong the
ellipticity is locally in the internal boundary. Take the
limiting case as an example, if the boundary is placed very
far downstream, where the flow resumes a fully developed
one, no iteration shall be needed. At least numerically, the
solution change after iteration will be negligible.

Based on the reference solution (101 x 101 uniform grid
solution), the efficiencies of the various grids are compared
in Table IV. The first row in the table is the numerical solu-
tion obtained by Guj and Stella [34]. A velocity—vorticity
formulation, together with a grid of 40 x 101, was used in
their study. The accuracy of the hybrid method solution
(25-H) is comparable to that of the 81 x 81 uniform grid
solution. However, the CPU time required is about 40 times
less and the total number of grid points used is four times
less. The solution by the grid moving method (25-M) also
achieves the accuracy of that of a 41 x 41 uniform grid solu-
tion with only one-sixth of the CPU time, The case 41-M,
which uses a similar total number of grid points with that of
the hybrid method, can barely reach the accuracy of the
hybrid grid solution with approximately two times more

a*—_*ﬁﬁ.% Y v
3 %2% |
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FIG. 16, Large error regions flagged by the various indicators: (a) solution errors relative to the reference solution (0.05 and 0.015 for the u, »
components, respectively); (b) by the Richardson method (0.05, 0.015); (c) by the formula Eq. (7} (15%, 15%).
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TABLE 1V

Summary of the Performances of the Various Approaches
{Backward Facing Step Flow)

Case X1/S ERR ERR, CPU Grid G.S.(& n)
Guj e — - — 4141 -—
25-U 9.5 145 496 682 625 (0.52,0.041)
25-M 1.8 35 153 720 625 (0.36, 0.020)
25-H 121 1.2 43 210t 1519 (0.18, 0.009)
41-U 106 56 181 4551 1681 (0.31, 0.024)
41-M 119 14 57 5011 1681 (0.20, 0.012)
61-U 117 24 80 15612 3721 (0.20, 0.016)
81.U 1.8 14 45 85445 6561 (0.16,0.012)
101-U 120 — — 321721 10201 (0.13, 0.010)
Note. U=uniform grid; M =adaptive grid. coupled; ERR=

(UN) ZIL [V —ug) + (0 — vg)’/i/ud + 03]; x 100%: ERR,, =
Max¥ | [/ —uo)?+ (0 — v/ /ud + 3], x 100%; where u, v are the
coarse grid velocities, ug, vy are 101 x 101 fine grid velocities, and & is the
number of grid points.

CPU time. Since in this problem, the “outer” region does
not need a finer grid, most grid points wilt be allocated in
the shear layer region when the grid moving method is
employed. In this sense, the distribution of the 41-M grid
will be similar to that of the 25-H grid. This can explain why
these two solutions are similar. Moreover, the hybrid adap-
tive grid has covered most of the domain in this case. The
hybrid method is therefore more like a global method, viz.,
the grid moving method. The finest grid size obtained in the
case 25-H is similar to that of the 81 x 81 uniform grid or,
equivalently, two levels of halving the grid size from the base
grid size, The finest grid sizes of the case 41-M are similar to
those of the case 25-H.

From the results of the above test problems, it is secen
that the present hybrid procedure improves the solution
significantly. From both Tables III and 1V, it is found that
in our test cases, to achieve a similar accuracy, the efficiency
of the hybrid method is higher than that of the moving grid
method by a factor of two to three, together with a smaller
total of grid points required. As mentioned previously, a
direct comparison between a local refinement method and a
global method is not practical. However, it is believed that
the efficiency of a local refinement method is similar to that
of the moving grid method [227. This is partly supported by
the results obtained in the present study. Several remarks on
the effectiveness of the present procedure can be made. First
of all, with a fixed initial number of grid points, the grid
moving method provides relatively good resolution in large
solution variation regions. This improved solution results in
smaller large error regions. Second, local refinement further
reduces errors by reducing the grid size right in the large
error regions where more grid points are urgently needed.
Note that in a traditional local refinement method which
starts with & uniform base grid, more levels of refinement
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will be needed to achieve the same resolution as that of the
hybrid method. Finally, since the total number of grid
points used is much smaller than that used in a uniform grid
solution, it is expected that the iteration number per grid
node can be reduced significantly as discussed by Braaten
and Shyy [35].

In the present hybrid method, only one level of refinement
is applied. Nevertheless, the improvement of the solution is
significant. If more than one level of refinement is needed,
important issues such as pattern recognition and data struc-
tures should be studied further to facililate the automation
of the present procedure. From the viewpoint of engineering
application, the present authors suggest that multi-level
refinement should be avoided if possible, especially when
applying to three-dimensional or transient problems, since
complex pattern recognition procedure and data structure
will detract from the effectiveness of the method. By the
same token, a solution-iteration-free adaptive procedure is
preferable; otherwise too many cycles of computation and
interpolation will again reduce the efficiency of the method,
especially in multi-dimensional problems. As demonstrated
in the test cases, the Richardson method provides a reliabic
indicator. However, an adequate, direct estimator is
still highly demanded for three-dimensional problems.
Application of the present adaptive gridding procedure to
three-dimensional problems is reported by the authors in
another article [36].

SUMMARY

In the present study, an adaptive procedure which
combines the concepts of global grid moving and local
refinement has been devised. The truncation error formula
derived previously is used as a direct error indicator to flag
the large error regions. With adequate selection of the
internal boundaries, iteration between the inner and outer
solutions may not be nceded. The specific efficiency of the
procedure amounts to 40 and 70, respectively, in the two-
dimensional test cases. The total number of grid points
needed 1s only a fraction of that of a uniform grid case.
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